Delete ltc_probe.py

This commit is contained in:
Chris Frankland-Wright 2025-07-07 00:13:00 +01:00 committed by GitHub
parent 428a5bee57
commit 14ad3acd02
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -1,91 +0,0 @@
#!/usr/bin/env python3
"""
ltc_probe.py
Advanced LTC-like signal probe using pulse duration clustering
for reliable short/long classification works even with imbalanced timecodes.
"""
import numpy as np
import sounddevice as sd
DURATION = 1.0 # seconds
SAMPLERATE = 48000
CHANNELS = 1
MIN_EDGES = 1000
def detect_rising_edges(signal):
above_zero = signal > 0
edges = np.where(np.logical_and(~above_zero[:-1], above_zero[1:]))[0]
return edges
def cluster_durations(durations):
if len(durations) < 2:
return None, None
# Use 2-means clustering (basic method)
durations = np.array(durations)
mean1, mean2 = np.min(durations), np.max(durations)
for _ in range(10): # converge in a few iterations
group1 = durations[np.abs(durations - mean1) < np.abs(durations - mean2)]
group2 = durations[np.abs(durations - mean1) >= np.abs(durations - mean2)]
if len(group1) == 0 or len(group2) == 0:
break
mean1 = np.mean(group1)
mean2 = np.mean(group2)
short = group1 if mean1 < mean2 else group2
long = group2 if mean1 < mean2 else group1
return short, long
def analyze_pulse_durations(edges, samplerate):
durations = np.diff(edges) / samplerate
if len(durations) == 0:
return None
short, long = cluster_durations(durations)
if short is None or long is None:
return None
total = len(durations)
return {
"count": total,
"avg_width_ms": np.mean(durations) * 1000,
"short_pulses": len(short),
"long_pulses": len(long),
"short_pct": (len(short) / total) * 100,
"long_pct": (len(long) / total) * 100
}
def verdict(pulse_data):
if pulse_data is None or pulse_data["count"] < MIN_EDGES:
return "❌ No signal or not enough pulses"
elif 10 <= pulse_data["short_pct"] <= 90:
return f"✅ LTC-like bi-phase signal detected ({pulse_data['count']} pulses)"
else:
return f"⚠️ Pulse imbalance suggests non-LTC or noisy signal"
def main():
print("🔍 Capturing 1 second of audio for LTC probing...")
audio = sd.rec(int(DURATION * SAMPLERATE), samplerate=SAMPLERATE, channels=CHANNELS, dtype='float32')
sd.wait()
signal = audio.flatten()
edges = detect_rising_edges(signal)
pulse_data = analyze_pulse_durations(edges, SAMPLERATE)
print(f"\n📊 Pulse Analysis:")
if pulse_data:
print(f" Total pulses: {pulse_data['count']}")
print(f" Avg pulse width: {pulse_data['avg_width_ms']:.2f} ms")
print(f" Short pulses: {pulse_data['short_pulses']} ({pulse_data['short_pct']:.1f}%)")
print(f" Long pulses: {pulse_data['long_pulses']} ({pulse_data['long_pct']:.1f}%)")
else:
print(" Not enough data to analyze.")
print("\n🧭 Verdict:")
print(" ", verdict(pulse_data))
if __name__ == "__main__":
main()